Name: _____ For Students Entering Geometry

I. Simplify each expression. Show all work.

1. $3(4-5) - 2^3$	2. $3 - 2(4 + 5) - 2$
3. $\frac{3+4(6)}{2}$	4. $(4x^3)(3x^2)$
5. √ <u>18</u>	6. $5a - 2b - (3a - b)$
7. $\frac{3x^2}{6x^3}$	8. $(3x^2)^4$

II. Solve for each variable.

9. $4x - 3 = 2(x + 1)$	$10. \frac{x+4}{6} = \frac{3}{7}$
11. Solve for H: <i>V</i> = <i>L</i> * <i>W</i> * <i>H</i>	12. If $a + b = 16$, then $3a + 3b =$

FOR THE FOLLOWING SECTIONS PLEASE READ THE GIVEN INFORMATION BEFORE YOU WORK ON THE PRACTICE PROBLEMS.

Radicals

Tips:

- You will need to know all your perfect squares $1^2 = 1$ through $20^2 = 400$.
- ^{index} *radicand* Radical

Guided Practice: Simplify Radicals

Simplify: $-5\sqrt{128}$ $-5\sqrt{64 \cdot 2}$ \leftarrow split the radicand into a factor pair, one of which is a

perfect square

$-5 \cdot \sqrt{64} \cdot \sqrt{2}$	\leftarrow put each factor under its own radical symbol
$-5 \cdot 8 \cdot \sqrt{2}$	\leftarrow find the square root of the perfect square factor
$-40\sqrt{2}$	\leftarrow simplify

Guided Practice: Add/Subtract Radicals

Tips:

- In order to add or subtract radicals, the index and the radicand must be the same!
- You combine radicals as if you were combining like-terms—add/subtract their coefficients **ONLY**.
- Sometimes it may be necessary to simplify the radicals before you add or subtract.

Simplify: $-\sqrt{99} + 6\sqrt{11} - 2\sqrt{3}$

 $-\sqrt{9 \cdot 11} + 6\sqrt{11} - 2\sqrt{3} \leftarrow$ Simplify each radical separately, if necessary (as above)

$$-\sqrt{9} \cdot \sqrt{11} + 6\sqrt{11} - 2\sqrt{3} \\ -3\sqrt{11} + 6\sqrt{11} - 2\sqrt{3}$$

<u>Guided Practice: Multiplication of Radicals</u>

Tips:

• This is NOT the only way to simplify these problems

Simplify: $2\sqrt{5} \cdot 4\sqrt{8}$	
$2\sqrt{5} \cdot 8\sqrt{2}$	\leftarrow Simplify each radical, if possible
$2 \cdot 8 \cdot \sqrt{5} \cdot \sqrt{2}$	\leftarrow Group coefficients together, group radicands
together	
$16\sqrt{10}$	\leftarrow Multiply coefficients and radicands

simplified \leftarrow Simplify radical, if possible

Guided Practice: Division of Radicals

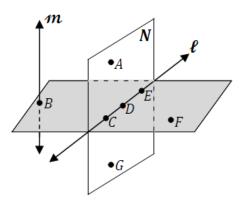
Tips:

• This is NOT the only way to simplify these problems

RADICALS

IV. Simplify. Express your answer in simplified radical form.

IV. Simplify. Express your answer in simplified radical form.		
<i>IV. Simplify. Express your answer in simplified rat</i> $13) -\sqrt{169}$	$(14)\sqrt{80} - 14\sqrt{5}$	
$15) - 3\sqrt{2} \cdot \sqrt{50}$	$16)\frac{\sqrt{120}}{\sqrt{8}}$	
$17)\sqrt{\frac{72}{9}}$	$18) 5\sqrt{2} + 2\sqrt{128}$	


Geometric Notation and Definitions

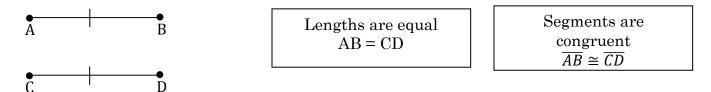
The following set of notation and definitions will be used throughout the entire course.

Notation	ng set of notation and definitions will be use Meaning	Diagram
\overrightarrow{AB} or \overrightarrow{BA} or Line ℓ	Line AB or Line ℓ Has one dimension. Through any two	$ \underbrace{ $
	points, there is exactly one line.	
\overline{AB}	Segment AB	
or		
BA	Consists of two endpoints A and B and all of the points on \overleftrightarrow{AB} between A and B	
\overrightarrow{AB}	Ray AB	•
Can't		A B
switch	Consists of one endpoint A and all the	
order!!	points on AB that are on the same side as B	
AB or BA	The length of segment <i>AB</i>	AB = 5 m.
	(has no segment bar on top)	A 5 m. B
=	Equal to	$\begin{array}{ccc} \bullet & \bullet \\ C & 2 \text{ in. } & D \\ \end{array} \qquad \begin{array}{ccc} \bullet & E \\ E & 2 \text{ in. } & F \\ \end{array}$
	*Lengths and angle measures are equal	Equal $CD = EF$ $2 = 2$ Congruent $\overline{CD} \cong \overline{EF}$
≅	Congruent (has the same measure)	7
	*Segments and angles are congruent	
		EqualCongruent $m \not = A = m \not = B$ $\not = A \cong \not = B$
<i>≰ABC</i>		4 - 7
or $\angle ABC$	Angle <i>ABC</i> has a vertex of B The vertex should be the middle letter	
m∡ABC or m∠ABC	The measure of angle <i>ABC</i>	$B = 40^{\circ}$ $m \neq ABC = 40^{\circ}$
0	Degree(s), a unit measure for angles	100°
T	Perpendicular	, h ,
	Two lines that intersect to form a right angle.	
I	Parallel	\longleftrightarrow
	<i>Two <mark>coplanar</mark> lines that never intersect.</i> <i>They have the same slope.</i>	$\leftrightarrow \rightarrow \rightarrow$
ΔABC ΔCBA	Triangle ABC	B
_0211		$A \square C$

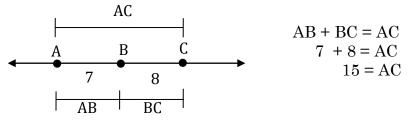
Other Definiti	ions		
Point	A point has no dimension.		
Point A	It is represented by a dot.	A	
Α			
Plane	A plane has two dimensions. It is		
	represented by a shape that looks like a	. M	
Plane <i>ABC</i>	floor or a wall and extends without end.	$\bullet C$	
Plane M	Through any three points not on the same line, there is exactly one plane.	В	
	You can use three points, not all on the same line, to name it.	Plane <i>ABC</i> or Plane <i>M</i>	
	Sometimes, you can use a capital letter without a point, if it is provided.		
Opposite Rays	Two rays with a common end point that go in opposite directions.	$ \begin{array}{c c} & \bullet & \bullet \\ A & B & C \end{array} $	
	The first letter is the endpoint.	\overrightarrow{BA} and \overrightarrow{BC} are opposite rays	
Collinear Points	Points that are on the same line.	See diagram above for OPPOSITE RAYS.	
		A. P. C. and colling our resints	
Conlanan	Deints that are on the same along	A, B, C are collinear points.	
Coplanar Points	Points that are on the same plane.	See diagram for PLANE above.	
Foints		A, B, C are coplanar points	
Adjacent	Angles that share a common vertex and	A, b, c are copianal points	
Angles	a common side that do not overlap each other. Angles must be coplanar.	41 and 42 are adjacent angles. 42 and 43 are adjacent angles. 41 and 43 are NOT adjacent angles.	

POINTS, LINES, & PLANES

V. Determine if the statement is true or false.


19) C, D, A are collinear	True	False
20) A and F are collinear	True	False
21) B, C, and F are coplanar	True	False
22) I can form exactly one plane with points C, D, and E	True	False
23) Plane N and Plane BCF intersect at line l	True	False

24) Give another name for CE	25) Give another name for ℓ
26) Give another name for \overrightarrow{CE}	27) Give another name for Plane BCF
28) Given that D is the midpoint of CE, what can you conclude?	29) Name a pair of opposite rays.


Segments

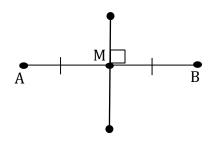
<u>**Congruent Segments</u>** - Line segments that have the same **length**.</u>

A "tick mark" is used on each segment to show that they are congruent.

Segment Addition Postulate - If point B is **between** A and C, then AB + BC = AC. Also, if AB + BC = AC, then point B is **between** point A and C.

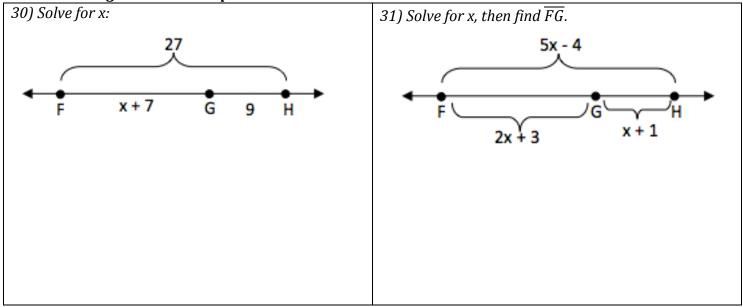


<u>Midpoint</u> - the point that **divides** a segment into two congruent segments.

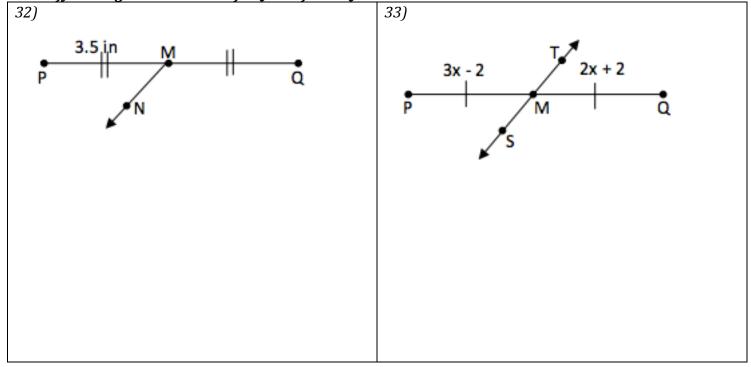

••••AMB
$$\overline{M}$$
 is the midpoint of \overline{AB} . $\overline{AM} \cong \overline{MB}$ and $AM = MB$

 \underline{Bisect} - to cut a segment into 2 congruent segments


Segment Bisector - a point, ray, line, line segment, or plane that intersects the segment as its midpoint.

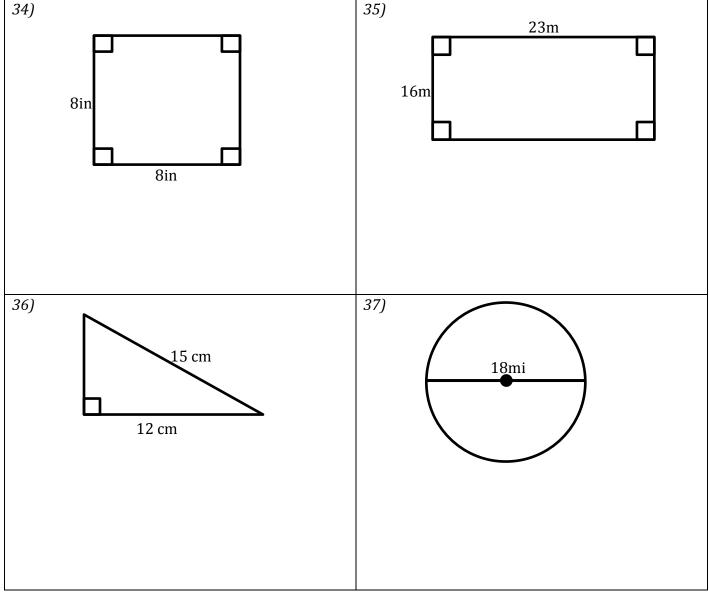


<u>Perpendicular Bisector</u> – a **segment bisector** that is perpendicular to the original segment.



SEGMENTS

Identify the segment bisector of \overline{PQ} then find PQ.


Area and Perimeter

Terms to know:

- Area: how much is contained within a 2-dimensional, contained shape
- Perimeter: the distance around a 2-dimensional, contained shape
 - \circ for a circle, called *circumference*
- Base and Height: one must be a side length. they must be perpendicular to each other
- Area of a square (b·h), rectangle (b·h), triangle(${}^{1\!\!/}_2 b{\cdot} h)$, circle (πr^2)
- Perimeter of polygons (sum of all the sides)
- Circumference of a circle $(2\pi r)$
- Pythagorean Theorem: the relationship between the sides of a right triangle
 - \circ **a**² + **b**² = **c**², where **c** is the hypotenuse

Area and Perimeter

