AP Java Summer Assignment							2015

BlueJ – You can type the code given or access the classes through the blueJPrograms project.

1. Create a class Employee. An employee has a name (a string) and a salary (a double).

Provide a constructor with two parameters.
	public Employee(String employeeName, double currentSalary)

and methods
	public String getName()
	public double getSalary()
	public void raiseSalary(double byPercent)
	
These methods return the name and the salary, and raise the employee’s salary by a certain percentage.

Supply an EmployeeTester class that supplies all methods.

/**
 This program tests the Employee class.
*/
public class EmployeeTester
{
 public static void main(String[] args)
 {
 Employee harry = new Employee("Harry Hacker", 50000);
 harry.raiseSalary(10);
 // TODO: Test getName, getSalary methods
 . . .
 }
}

/**
 An employee with a name and salary.
*/
public class Employee
{
 /**
 Constructs an employee.
 @param employeeName the employee name
 @param currentSalary the employee salary
 */
 public Employee(String employeeName, double currentSalary)
 {
 . . .
 }

 /**
 Gets the employee name.
 @return the name
 */
 public String getName()
 {
 . . .
 }

 /**
 Gets the employee salary.
 @return the salary
 */
 public double getSalary()
 {
 . . .
 }

 /**
 Raises the salary by a given percentage.
 @param percent the percentage of the raise
 */
 public void raiseSalary(double percent)
 {
 . . .
 }

 private String name;
 private double salary;
}

2. Implement a class Student. For the purpose of this exercise, a student has a name and a total quiz score. Supply an appropriate constructor and methods getName(), addQuiz(int score), getTotalScore(), getAverageScore(). To compute the latter, you also need to store the number of quizzes that the student took. Supply a StudentTester class that tests all methods.

/**
 This program tests the Student class.
*/
public class StudentTester
{
 public static void main(String[] args)
 {
 Student student = new Student("Cracker, Carla");

 // TODO: Add some quizzes

 // TODO: Print actual and expected name, total score

 }
}

/**
 A student who is taking quizzes.
*/
public class Student
{
 /**
 Constructs a student with a given name.
 @param n the name
 */
 public Student(String n)
 {
 . . .
 }

 /**
 Gets the name of this student.
 @return the name
 */
 public String getName()
 {
 . . .
 }

 /**
 Adds a quiz score.
 @param the score to add
 */
 public void addQuiz(int score)
 {
 . . .
 }

 /**
 Gets the sum of all quiz scores.
 @return the total score
 */
 public double getTotalScore()
 {
 . . .
 }

 /**
 Gets the average of all quiz scores.
 @return the average score
 */
 public double getAverageScore()
 {
 . . .
 }

 . . .
}

3a. Enhance the CashRegister class by adding separate methods payDollars, payQuarters, payDimes, payNickels, and payPennies.

Use this tester class:
/**
 This class tests the CashRegister class.
*/
public class CashRegisterTester
{
 public static void main(String[] args)
 {
 CashRegister register = new CashRegister();

 register.recordPurchase(20.37);
 register.payDollars(20);
 register.payQuarters(2);
 System.out.println("Change: " + register.giveChange());
 System.out.println("Expected: 0.13");
 }
}

/**
 A cash register totals up sales and computes change due.
*/
public class CashRegister
{
 /**
 Constructs a cash register with no money in it.
 */
 public CashRegister()
 {
 purchase = 0;
 payment = 0;
 }

 /**
 Records the sale of an item.
 @param amount the price of the item
 */
 public void recordPurchase(double amount)
 {
 double newTotal = purchase + amount;
 purchase = newTotal;
 }

 /**
 Computes the change due and resets the machine for the next customer.
 @return the change due to the customer
 */
 public double giveChange()
 {
 double change = payment - purchase;
 purchase = 0;
 payment = 0;
 return change;
 }

 public void payDollars(int dollars)
 {
 . . .
 }

 public void payQuarters(int quarters)
 {
 . . .
 }

 public void payDimes(int dimes)
 {
 . . .
 }

 public void payNickels(int nickels)
 {
 . . .
 }

 public void payPennies(int pennies)
 {
 . . .
 }

 private double purchase;
 private double payment;

 public static final double QUARTER_VALUE = 0.25;
 public static final double DIME_VALUE = 0.1;
 public static final double NICKEL_VALUE = 0.05;
 public static final double PENNY_VALUE = 0.01;
}

3b. Enhance the CashRegister class so that it keeps track of the total number of items in a sale. Count all recorded purchases and supply a method

	int getItemCount()

that returns the number of items of the current purchase. Remember to reset the count at the end of the purchase.

[bookmark: _GoBack]

4. Implement a class IceCreamCone with methods getSurfaceArea() ad getVolume(). In the constructor, supply the height and radius of the cone. Be careful when looking up the formula for the surface area – you should only include the outside area along the side of the cone since the cone has an opening on the top to hold the ice cream.

/**
 This program tests the IceCreamCone class.
*/
public class IceCreamConeTester
{
 public static void main(String[] args)
 {
 IceCreamCone c = new IceCreamCone(5, 1);

 System.out.print("Volume: ");
 System.out.println(c.getVolume());
 System.out.println("Expected: 5.235987755982989");
 System.out.print("Surface area: ");
 System.out.println(c.getSurfaceArea());
 System.out.println("Expected: 16.01904224441409");
 }
}

