COURSE TITLE
Algebra 1

LENGTH
Full Year

DEPARTMENT
STEM Department

SCHOOL
Rutherford High School

DATE
September 10, 2018
Algebra 1

I. Introduction/Overview/Philosophy

Algebra 1 covers a rigorous foundation in skills involving the real number system, signed numbers, algebraic expressions, and solving equations, systems, and inequalities. An introduction of functions is developed and deepened through function notation, graphing, evaluating, operations of functions, and compositions of functions. Additional topics include graphing linear equations, polynomials, factoring, and solving quadratic equations. There is an emphasis on applications of these skills and topics infused throughout the course. This course bridges the gap between concrete ideas of arithmetic and abstract ideas for higher mathematics.

II. Objectives

Course Outline:

1. Solving Linear Equations
 a. Solving simple/multi-step equations
 b. Solving absolute value equations
 c. Rewriting equations and formulas
2. Solving Linear Inequalities
 a. Writing and graphing inequalities in one variable
 b. Solving inequalities using addition or subtraction and multiplication or division
 c. Solving multi-step inequalities
 d. Solving compound inequalities
 e. Solving absolute value inequalities
3. Graphing Linear Functions
 a. Determine if a relation is a function
 b. Determine if a function is linear
 c. Function notation
 d. Graphing lines in standard and slope-intercept form.
 e. Graphing absolute value
4. Writing Linear Functions
 a. Writing equations in slope-intercept form/point-slope form
 b. Writing equations of parallel and perpendicular lines
 c. Scatter plots and lines of fit
 d. Arithmetic sequences
 e. Piecewise Functions
5. Solving Systems of Linear Equations
 a. Solving linear systems of equations by graphing/substitution/elimination
 b. Solving special systems (parallel/perpendicular lines)
 c. Graphing inequalities in two variables
 d. Systems of linear inequalities
6. Exponential Functions and Sequences
 a. Properties of exponents
 b. Radicals and rational exponents
c. Exponential functions
d. Exponential growth and decay

7. Polynomial Equations and Factoring
 a. Adding, subtracting, and multiplying polynomials
 b. Solving polynomial equations in factored form
 c. Factoring trinomials when a=1
 d. Factoring trinomials when a>1
 e. Factoring special products
 f. Factoring polynomials completely

8. Graphing Quadratic Functions
 a. Graphing \(f(x)=ax^2 \)
 b. Graphing \(f(x)= ax^2+c \)
 c. Graphing \(f(x)=ax^2+bx+c \)
 d. Graphing \(f(x)=a(x-h)^2+k \)
 e. Using intercept form
 f. Comparing linear, quadratic and exponential graphs

9. Solving Quadratic Equations
 a. Properties of radicals
 b. Solving quadratics using square roots
 c. Solving quadratics using completing the square
 d. Solving quadratics using quadratic formula

10. Radical Functions and Equations
 a. Graphing square root functions
 b. Graphing cube root functions
 c. Solving radical equations
 d. Inverse of a function

11. Data Analysis and Displays
 a. Measures of center and variation
 b. Box and whisker plots
 c. Shapes of distributions
 d. Two-way tables

Student Outcomes:

After successfully completing this course, the student will:

- Analyze functions using different representations
- Build a function that models a relationship between two quantities
- Build new functions from existing functions
- Construct & compare linear, quadratic, & exponential models
- Create equations that describe numbers or relationships
- Interpret expressions for functions in terms of the situation
- Interpret functions that arise in applications in terms of the context
- Interpret linear models
- Interpret the structure of expressions
- Perform arithmetic operations on polynomials
- Reason quantitatively and use units to solve problems
- Represent and solve equations and inequalities graphically
- Solve equations and inequalities in one variable
- Solve linear systems of equations
- Summarize, represent, and interpret data on a single count or measurement variable
- Summarize, represent, and interpret data on two categorical and quantitative variables
- Understand solving equations as a process of reasoning and explain the reasoning
- Understand the concept of a function and use function notation
- Understand the relationship between zeros and factors
- Use properties of rational and irrational numbers

New Jersey Student Learning Standards

Career Ready Practices

CRP1 Act as a responsible and contributing citizen and employee.
Career-ready individuals understand the obligations and responsibilities of being a member of a community, and they demonstrate this understanding every day through their interactions with others. They are conscientious of the impacts of their decisions on others and the environment around them. They think about the near-term and long-term consequences of their actions and seek to act in ways that contribute to the betterment of their teams, families, community and workplace. They are reliable and consistent in going beyond the minimum expectation and in participating in activities that serve the greater good.

CRP2 Apply appropriate academic and technical skills.
Career-ready individuals readily access and use the knowledge and skills acquired through experience and education to be more productive. They make connections between abstract concepts with real-world applications, and they make correct insights about when it is appropriate to apply the use of an academic skill in a workplace situation.

CRP4 Communicate clearly and effectively and with reason.
Career-ready individuals communicate thoughts, ideas, and action plans with clarity, whether using written, verbal, and/or visual methods. They communicate in the workplace with clarity and purpose to make maximum use of their own and others’ time. They are excellent writers; they master conventions, word choice, and organization, and use effective tone and presentation skills to articulate ideas. They are skilled at interacting with others; they are active listeners and speak clearly and with purpose. Career-ready individuals think about the audience for their communication and prepare accordingly to ensure the desired outcome.

CRP6 Demonstrate creativity and innovation.
Career-ready individuals regularly think of ideas that solve problems in new and different ways, and they contribute those ideas in a useful and productive manner to improve their organization. They can consider unconventional ideas and suggestions as solutions to issues, tasks or problems, and they discern which ideas and suggestions will add greatest value. They seek new methods, practices, and ideas from a variety of sources and seek to apply those ideas to their own workplace. They take action on their ideas and understand how to bring innovation to an organization.

CRP7 Employ valid and reliable research strategies.
Career-ready individuals are discerning in accepting and using new information to make decisions, change practices or inform strategies. They use reliable research process to search for new information. They evaluate the validity of sources when considering the use and adoption of external information or practices in their workplace situation.
CRP8. Utilize critical thinking to make sense of problems and persevere in solving them.
Career-ready individuals readily recognize problems in the workplace, understand the nature of the problem, and devise effective plans to solve the problem. They are aware of problems when they occur and take action quickly to address the problem; they thoughtfully investigate the root cause of the problem prior to introducing solutions. They carefully consider the options to solve the problem. Once a solution is agreed upon, they follow through to ensure the problem is solved, whether through their own actions or the actions of others.

CRP11. Use technology to enhance productivity.
Career-ready individuals find and maximize the productive value of existing and new technology to accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks.

TECHNOLOGY

Standard 8.1 Educational Technology: All students will use digital tools to access, manage, evaluate, and synthesize information in order to solve problems individually and collaborate and to create and communicate knowledge.

Strand A. Technology Operations and Concepts: Students demonstrate a sound understanding of technology concepts, systems and operations.
8.1.12.A.1- Create a personal digital portfolio which reflects personal and academic interests, achievements, and career aspirations by using a variety of digital tools and resources.

Strand F: Critical thinking, problem solving, and decision making: Students use critical thinking skills to plan and conduct research, manage projects, solve problems, and make informed decisions using appropriate digital tools and resources.
8.1.12.F.1- Evaluate the strengths and limitations of emerging technologies and their impact on educational, career, personal and or social needs.

21ST CENTURY LIFE AND CAREERS

9.1 Personal Financial Literacy

Strand A: Income and Careers
9.1.12.A.3 Analyze the relationship between various careers and personal earning goals.
9.1.12.A.4 Identify a career goal and develop a plan and timetable for achieving it, including educational/training requirements, costs, and possible debt.

Strand B: Money Management
9.1.12.B.2 Compare strategies for saving and investing and the factors that influence how much should be saved or invested to meet financial goals.
9.1.12.B.8 Describe and calculate interest and fees that are applied to various forms of spending, debt, and saving.

9.2 Career Awareness, Exploration, and Preparation

Strand C: Career Preparation
9.2.12.C.1 Review career goals and determine steps necessary for attainment.
9.2.12.C.2 Modify Personalized Student Learning Plans to support declared career goals.

NEW JERSEY STUDENT LEARNING STANDARDS- MATH
A.APR.A.1. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
A.APR.B.3. Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.
A.CED.A.1. Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear functions and quadratic functions, and simple rational and exponential functions.
A.CED.A.2. Create equations in two or more variables to represent relationships between quantities; Graph equations on coordinate axes with labels and scales.
A.CED.A.3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.
A.CED.A.4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law $V = IR$ to highlight resistance R.
A.REI.A.1. Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
A.REI.B.3. Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
A.REI.B.4. Solve quadratic equations in one variable.
 A.REI.B.4a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x - p)^2 = q$ that has the same solutions. Derive the quadratic formula from this form.
 A.REI.B.4b. Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a + bi$ for real numbers a and b.
A.REI.C.5. Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.
A.REI.C.6. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
A.REI.D.10. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). [Focus on linear equations.]
A.REI.D.11. Explain why the x-coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.*
A.REI.D.12. Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.
A.SSE.A.1. Interpret expressions that represent a quantity in terms of its context.
 A.SSE.A.1a: Interpret parts of an expression, such as terms, factors, and coefficients.
 A.SSE.A.1b: Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r)^n$ as the product of P and a factor not depending on P.
A.SSE.A.2. Use the structure of an expression to identify ways to rewrite it.
A.SSE.B.3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
 A.SSE.B.3a. Factor a quadratic expression to reveal the zeros of the function it defines.
A.SSE.B.3b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.
A.SSE.B.3c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15t can be rewritten as $(1.15^{1/12})12t \approx 1.01212t$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.

F.BF.A.1. Write a function that describes a relationship between two quantities.
F.BF.A.1a. Determine an explicit expression, a recursive process, or steps for calculation from a context.
F.BF.B.3. Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
F.IF.A.1. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y = f(x)$.
F.IF.A.2. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
F.IF.A.3. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0) = f(1) = 1$, $f(n+1) = f(n) + f(n-1)$ for $n \geq 1$.
F.IF.B.4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.
F.IF.B.5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.
F.IF.B.6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
F.IF.C.7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
F.IF.C.7a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
F.IF.C.7b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
F.IF.C.8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
F.IF.C.8a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
F.IF.C.9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
F.LE.A.1. Distinguish between situations that can be modeled with linear functions and with exponential functions.
F.LE.A.1a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.
F.LE.A.1b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
F.LE.A.1c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
F.LE.A.2. Construct linear and exponential functions - including arithmetic and geometric sequences - given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).

F.LE.A.3. Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

F.LE.B.5. Interpret the parameters in a linear or exponential function in terms of a context. For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

N.Q.A.1. Use units as a way to understand problems and to guide the solution of multi-step problems; Choose and interpret units consistently in formulas; Choose and interpret the scale and the origin in graphs and data displays.

N.Q.A.2. Define appropriate quantities for the purpose of descriptive modeling.

N.Q.A.3. Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

N.RN.B.3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

S.ID.A.1. Represent data with plots on the real number line (dot plots, histograms, and box plots).

S.ID.A.2. Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.

S.ID.A.3. Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).

S.ID.B.5. Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.

S.ID.B.6. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.

S.ID.B.6a. Fit a function to the data (including the use of technology); use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.

S.ID.B.6b. Informally assess the fit of a function by plotting and analyzing residuals, including with the use of technology.

S.ID.B.6c. Fit a linear function for a scatter plot that suggests a linear association.

S.ID.C.7. Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.

S.ID.C.8. Compute (using technology) and interpret the correlation coefficient of a linear fit.

Mathematical Practices

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
III. Proficiency Levels

The course is appropriate for ninth grade students who need an additional year of study and preparation in Algebra 1 before continuing their study of mathematics at the high school.

IV. Methods of Assessment

Student Assessment
The teacher will provide a variety of assessments during the course of the year. The assessment may include but is not limited to: chapter and unit tests and quizzes, teacher observations, open-ended problems, cooperative work, and homework.

Curriculum/Teacher Assessment
The teacher will provide the subject area supervisor with suggestions for changes on an ongoing basis.

V. Grouping

Algebra 1 is a homogeneously grouped freshman level course.

VI. Articulation/Scope & Sequence/Time Frame

Course length is one year.

VII. Resources

Texts/Supplemental Reading/References

VIII. Suggested Activities

Appropriate activities are listed in the curriculum map.

IX. Methodologies

The following methods of instruction are suggested: teacher guided explorations, working in groups/working with a partner, working with manipulatives and discovery activities.

X. Interdisciplinary Connections

At this grade level, connections to many other disciplines are appropriate and natural. Reading and writing become an integral part of the mathematics process. Connections with science are frequent throughout both curricula. Technology plays an important part in learning mathematics as well.
XI. Differentiating Instruction for Students with Special Needs: Students with Disabilities, Students at Risk, English Language Learners, and Gifted & Talented Students

Differentiating instruction is a flexible process that includes the planning and design of instruction, how that instruction is delivered, and how student progress is measured. Teachers recognize that students can learn in multiple ways as they celebrate students’ prior knowledge. By providing appropriately challenging learning, teachers can maximize success for all students.

Differentiating in this course includes but is not limited to:

Differentiation for Support (ELL, Special Education, Students at Risk)
- Peer mentoring on problems
- Differentiated teacher feedback on assignments
- Modeling out problems on whiteboard
- Visual aids as we project problems on whiteboard
- Study guides
- Tiered assignments
- Scaffolding of materials and assignments
- Re-teaching and review
- Guided note taking
- Exemplars of varied performance levels
- Multi-media approach to accommodating various learning styles

Differentiation for Enrichment
- Supplemental reading material for independent study
- Flexible grouping
- Tiered assignments
- Topic selection by interest
- Enhanced expectations for independent study
- Elevated questioning techniques using Webb's Depth of Knowledge matrix

XII. Professional Development

The teacher will continue to improve expertise through participation in a variety of professional development opportunities.
XII. Curriculum Map/Pacing Guide

<table>
<thead>
<tr>
<th>Unit Topic</th>
<th>Time Allocated</th>
<th>Differentiating Instruction for Students with Disabilities, Students at Risk, English Language Learners, & Gifted & Talented Students</th>
<th>Standards</th>
<th>Assessments</th>
</tr>
</thead>
</table>
| **Solving Linear Equations** | 3 weeks | *For Support:*
 - Guided notes
 - Teacher modeling
 - Scaffolding (breaking down acronym i.e.; PEMDAS backwards into parts)
 - Use of algebra manipulative
 - Assessment accommodations (extended time, use of calculator)

 For Enhancement:
 - Advanced problems involving fractions, decimals.
 - Khan Academy Practice/Khan SAT
 - Use of IXL | A-CED.A.1
 A-SSE.A.1a
 A-CED.A.4
 A-REI.A.1
 A-REI.B.3
 CRP1,4,6,7,8,11
 9.1.12.B.2
 9.1.12.B.8
 9.2.12.C.1
 9.2.12.C.2 | *Formative Assessment:*
 - Quiz on solving simple and multi-step equations.
 - Quiz on linear word problems
 - Quiz on absolute value equations and rewriting equations

 Summative Assessment:
 - Test on solving linear equations-simple, multi-step, absolute value and rewriting. |
| **Solving Linear Inequalities** | 3 weeks | *For Support:*
 - Guided notes
 - Teacher modeling
 - Visual learning, including graphic organizer
 - Use of note card for cues (i.e.; flip the sign when dividing by a negative, inequality symbols and definitions) | A-REI.B.3
 A-CED.A.1
 A-CED.A.3
 A-CED.A.4
 CRP1,4,6,7,8,11
 9.1.12.B.2
 9.1.12.B.8 | *Formative Assessment:*
 - Quiz on writing, graphing and solving one variable inequalities
 - Quiz on solving compound and absolute value inequalities

 Summative Assessment: |
<table>
<thead>
<tr>
<th>Unit Topic</th>
<th>Time Allocated</th>
<th>Differentiating Instruction for Students with Disabilities, Students at Risk, English Language Learners, & Gifted & Talented Students</th>
<th>Standards</th>
<th>Assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>division</td>
<td></td>
<td>• Assessment accommodations (extended time, use of calculator)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Solving multi-step inequalities</td>
<td></td>
<td>For Enhancement:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Solving compound inequalities</td>
<td></td>
<td>• Use of IXL (matching graphs to inequality)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Solving absolute value inequalities</td>
<td></td>
<td>• Real-world problems and scenarios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Translate real world problems into inequalities and represent solutions graphically</td>
<td></td>
<td>For Support:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Assessment accommodations (extended time, use of calculator)</td>
<td>4 weeks</td>
<td>For Enhancement:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Use of IXL</td>
<td></td>
<td>• Use of IXL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Use of graphing calculator</td>
<td></td>
<td>• Use of graphic organizers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Use of visual formats</td>
<td></td>
<td>• Assessment accommodations (extended time, use of calculator)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Test on graphing, writing and solving one variable inequalities, absolute value inequalities and compound inequalities.</td>
<td></td>
<td>Formative Assessment:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphing Linear Functions</td>
<td></td>
<td>• Quiz on determining if a relation is a function and if the function is linear and function notation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Determine if a relation is a function</td>
<td></td>
<td>• Quiz on graphing in standard and slope intercept form</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Determine if a function is linear</td>
<td></td>
<td>Summative Assessment:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Function notation</td>
<td></td>
<td>• Test on determining if a relation is a function, function notation, graphing linear and absolute value functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Graphing lines in standard and slope-intercept form.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Graphing absolute value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing Linear Functions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Writing equations in slope-intercept form/point-slope form</td>
<td>4 weeks</td>
<td>For Support:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Use of graphic organizer (parts of a linear equation)</td>
<td></td>
<td>• Use of graphic organizer (parts of a linear equation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Assessment accommodations</td>
<td></td>
<td>• Assessment accommodations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Test on writing equations in slope-intercept and point slope form and writing</td>
<td></td>
<td>Formative Assessment:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit Topic</td>
<td>Time Allocated</td>
<td>Differentiating Instruction for Students with Disabilities, Students at Risk, English Language Learners, & Gifted & Talented Students</td>
<td>Standards</td>
<td>Assessments</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>---</td>
<td>-----------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| • Writing equations of parallel and perpendicular lines
• Scatter plots and lines of fit
• Arithmetic sequences
• Piecewise Functions | (extended time, use of calculator)
• Use of note card with formulas (linear equation, arithmetic sequences)
For Enhancement:
• Use of IXL
• Student-driven projects (real-world data for scatter plots) | A-CED.A.4
A-REI.D.10
F-LE.A.2
A-SSE.A.1
A-SSE.B.3
CRP1,4,6,7,8,11
9.1.12.A.3
• Quiz on scatterplots, lines of fit and arithmetic sequences
Summative Assessment: Test on writing equations, scatterplots, arithmetic sequences and piecewise functions |
| Solving Systems of Linear Equations | 4 weeks | For Support:
• Guided notes
• Teacher modeling
• Scaffolding (breaking down acronym i.e.; PEMDAS backwards into parts)
• Use of algebra/geometry manipulative
• Assessment accommodations (extended time, use of calculator)
For Enhancement:
• Khan Academy Practice/Khan SAT
• Use of IXL | A-CED.A.3
A-CED.A.4
A-REI.C.5
A-REI.C.6
A-REI.C.7
A-REI.D.11
A-REI.D.12
A-SSE.A.1
CRP1,4,6,7,8,11
8.1.12.A.1
9.1.12.A.3
9.1.12.A.4
9.2.12.C.1
9.2.12.C.2 | Formative Assessment:
• Quiz on solving systems by graphing and substitution
• Quiz on solving systems by elimination and special systems
• Quiz on graphing linear inequalities and systems of linear inequalities
Summative Assessment:
• Test on solving systems using all methods and graphing systems of inequalities |
| Exponential Functions and Sequences | 3 weeks | For Support:
• Use of note cards for rules of exponents with worked examples
• Use of prompts
• Use of assisted technology (Desmos Graphing Website) | N-RN.A.1
N-RN.A.2
N-RN.B.3
A-SSE.B.3.c
F-IF.C.8.b
A-SSE.A.1 | Formative Assessment:
• Quiz on properties of exponents and radicals and rational exponents
Summative Assessment:
• Test on properties of
<table>
<thead>
<tr>
<th>Unit Topic</th>
<th>Time Allocated</th>
<th>Differentiating Instruction for Students with Disabilities, Students at Risk, English Language Learners, & Gifted & Talented Students</th>
<th>Standards</th>
<th>Assessments</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Exponential growth and decay</td>
<td></td>
<td>• Assessment accommodations (extended time, use of calculator)</td>
<td>CRP1,4,6,7,8,11</td>
<td>exponents and radicals, exponential growth and decay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For Enhancement:</td>
<td>9.1.12.B.2</td>
<td>• Half-life project on exponential decay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Real-world problems and scenarios</td>
<td>9.1.12.B.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inquiry-based instruction (rules of exponents)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polynomial Equations and Factoring</td>
<td>5 weeks</td>
<td>For Support:</td>
<td>A-APR.A.1</td>
<td>For Formative Assessment:</td>
</tr>
<tr>
<td>- Adding, subtracting, and multiplying polynomials</td>
<td></td>
<td>• Use of graphic organizer (factoring GCF, trinomials, factor by grouping)</td>
<td>A-APR.B.3</td>
<td>• Quiz on adding, subtracting and multiplying polynomials.</td>
</tr>
<tr>
<td>- Solving polynomial equations in factored form</td>
<td></td>
<td>• Modified assessments</td>
<td>A-APR.C.4</td>
<td>• Quiz on factoring using GCF, trinomials and grouping</td>
</tr>
<tr>
<td>- Factoring trinomials when a=1</td>
<td></td>
<td>• Use of prompts</td>
<td>A-APR.C.5</td>
<td>Summative Assessment:</td>
</tr>
<tr>
<td>- Factoring trinomials when a>1</td>
<td></td>
<td>• Assessment accommodations (extended time, use of calculator)</td>
<td>A-REI.B.4.b</td>
<td>• Test on operations with polynomials and factoring/solving polynomial equations.</td>
</tr>
<tr>
<td>- Factoring special products</td>
<td></td>
<td>For Enhancement:</td>
<td>A-SSE.A.1</td>
<td></td>
</tr>
<tr>
<td>- Factoring polynomials completely</td>
<td></td>
<td>• Use of IXL</td>
<td>A-SSE.A.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Provide extension activities (factor completely), real world problems</td>
<td>F-IF.C.7.c</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Critical/Analytical thinking tasks</td>
<td>F-IF.C.8.a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CRP1,4,6,7,8,11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.1.12.F.1</td>
<td></td>
</tr>
<tr>
<td>Graphing Quadratic Functions</td>
<td>4 weeks</td>
<td>For Support:</td>
<td>F-IF.C.7.a</td>
<td>For Formative Assessment:</td>
</tr>
<tr>
<td>- Graphing f(x)=ax^2</td>
<td></td>
<td>• Scaffold instruction</td>
<td>F-IF.C.8.a</td>
<td>• Quiz on graphing quadratics in standard form</td>
</tr>
<tr>
<td>- Graphing f(x)= ax^2+c</td>
<td></td>
<td>• Pre-teaching of vocabulary and concepts (i.e.; quadratic, parabola, vertex, axis of symmetry)</td>
<td>F-IF.C.9</td>
<td>• Quiz on graphing quadratics in vertex form</td>
</tr>
<tr>
<td>- Graphing f(x)=ax^2+bx+c</td>
<td></td>
<td>• Use of note card</td>
<td>F-LEA.A.3</td>
<td>Summative Assessment:</td>
</tr>
<tr>
<td>- Graphing f(x)=a(x-h)^2+k</td>
<td></td>
<td>(x = -b/2a, standard form, vertex form)</td>
<td>A-SSE.A.1</td>
<td>• Test on graphing quadratics in standard and vertex form</td>
</tr>
<tr>
<td>- Using intercept form</td>
<td></td>
<td></td>
<td>A-SSE.B.3.a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A-CED.A.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CRP1,4,6,7,8,11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.1.12.F.1</td>
<td></td>
</tr>
<tr>
<td>Unit Topic</td>
<td>Time Allocated</td>
<td>Differentiating Instruction for Students with Disabilities, Students at Risk, English Language Learners, & Gifted & Talented Students</td>
<td>Standards</td>
<td>Assessments</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------</td>
<td>--</td>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>• Comparing linear, quadratic and exponential graphs</td>
<td>4 weeks</td>
<td>• Use of technology (Desmos.com, graphing calculator) • Assessment accommodations (extended time, use of calculator) For Enhancement: • Inquiry-based instruction (what does each part of the equation do to the parabola?) • Khan Academy • Real world application problems</td>
<td>9.1.12.A.3</td>
<td>and comparing linear, quadratic and exponential graphs. For Enhancement:</td>
</tr>
<tr>
<td>Solving Quadratic Equations</td>
<td></td>
<td>For Support: • Use of note card with properties of radicals, list of perfect roots, and quadratic formula. • Assessment accommodations (extended time, use of calculator) For Enhancement: • Adjusting the pace of the lesson • Provide extension activities • Real world application problems • Larger square roots to work with and simplify</td>
<td>A-REI.A.2 A-REI.B.4.a A-REI.B.4.b F-IF.C.8.a A-SSE.B.3.b CRP1,4,6,7,8,11 8.1.12.F.1</td>
<td>Formative Assessment: • Quiz on properties of radicals and simplifying radicals • Quiz on solving quadratic equations using square roots and completing the square Summative Assessment: • Test on properties of radicals and solving quadratic equations by square roots, completing the square and the quadratic formula.</td>
</tr>
<tr>
<td>Radical Functions and Equations</td>
<td>3 weeks</td>
<td>For Support: • Use of IXL • Use of technology (Desmos, Graphing Calculator) • Teacher modeling (i.e.; scaled</td>
<td>A-REI.A.2 A-REI.B.4.b F-IF.C.7.b F-BF.B.4 N-RN.A.1</td>
<td>Formative Assessment: • Quiz on graphing square root and cube root functions • Quiz on solving radical equations</td>
</tr>
<tr>
<td>Unit Topic</td>
<td>Time Allocated</td>
<td>Differentiating Instruction for Students with Disabilities, Students at Risk, English Language Learners, & Gifted & Talented Students</td>
<td>Standards</td>
<td>Assessments</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>---</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>functions</td>
<td></td>
<td>• Solving radical equations
• Inverse of a function

For Enhancement:
• Assessment accommodations (extended time, use of calculator)</td>
<td>N-RN.A.2 CRP1,4,6,7,8,11 8.1.12.F.1</td>
<td>Summative Assessment:
• Test on graphing square and cube root functions, solving radical equations and writing inverse functions.</td>
</tr>
<tr>
<td>Data Analysis and Displays</td>
<td>3 Weeks</td>
<td>• Measures of center and variation
• Box and whisker plots
• Shapes of distributions
• Two-way tables

For Support:
• Use of prompts
• Use of visual and multi-sensory formats
• Use of IXL
• Assessment accommodations (extended time, use of calculator)

For Enhancement:
• Real-world problems and scenarios
• Provide extension activities
• Student driven projects</td>
<td>S-ID.A.1 S-ID.A.2 S-ID.A.3 S-ID.A.4 S-ID.B.5 S-ID.B.6 S-ID.C.9</td>
<td>Formative Assessment:
• Quiz on mean, median and mode
• Quiz on box and whisker plots and shapes of distributions

Summative Assessment:
• Test on measures of center and variation, box and whisker plots, shapes of distributions and two-way tables</td>
</tr>
</tbody>
</table>