
COURSE TITLE

Computer Programming 1

LENGTH

One Semester
Grades 9-12

DEPARTMENT

Computer Department

Barbara O’Donnell, Supervisor

SCHOOL

Rutherford High School

DATE

Spring 2017

Computer Programming 1 Page 1

COMPUTER PROGRAMMING 1

I. Introduction/Overview/Philosophy
Computer Programming 1 is designed for students who wish to gain an understanding of computer coding or
who plan to further their knowledge of computer design and computer programming in upper level high school
computer classes, college, business, or vocational schools. This course provides an introduction to the Python
programming language. Students will learn the fundamental concepts of programming—concepts that can be
applied in the study of any programming language. Students will also dive into specific features of the Python
programming language. The course utilizes a blended classroom approach. The content is fully web-based, with
students writing and running code in the browser. Teachers utilize tools and resources provided by CodeHS to
leverage time in the classroom and give focused 1-on-1attention to students. This course will provide a
foundation for more advanced computer programming languages and computer design techniques

II. Objectives

Course Outline
I. Getting Started with Python

A. Introduction to Python / Computer Science
B. Introduction to OOP (Object-Oriented Programming) with graphics
C. Introduction to use of basic commands

II. Basic Python and Console Interaction
A. Printing to the console
B. Learn debugging techniques
C. Declaration, initialization, and assignment of variables
D. Data types (int, double, string, boolean)
E. Translation of arithmetic expressions
F. Using and converting keyboard input

III. Control Flow
A. Use of comments for program understanding
B. Use of Decision Statements

1. If statements
2. Conditional operators
3. Boolean values

• C. Use of Iteration
1. While loops
2. For loops
3. Nested loops

D. Introduction to Functions
1. User defined functions
2. Built-in functions

E. Exception handling and identification
IV. Strings

A. Manipulation of strings
B. Math operators on strings
C. Traverse through a string

Computer Programming 1 Page 2

If time allows and based upon student needs the following topics can/will be covered:

V. Data Structures

A. Tuples
B. Lists
C. Dictionaries
D. 2D Lists
E. List comprehensions
F. Packing and unpacking
G. Mutable vs. immutable
H. Equivalence vs. identity

VI. Classes and objects
A. Classes
B. Attributes
C. Class variables vs. instance variables
D. Methods
E. Built-in methods
F. Composition, inheritance and polymorphism
G. Private attributes

Student Outcomes:

Upon completion of the course, students will demonstrate the ability to:
● Code in the Python language fluently in a well-structured fashion
● Understand the concepts of object-oriented programming as used in Python including control

statements, loops, functions, and lists.
● Develop an intuition for syntax in program creation
● Analyze and design strategies for solving basic programming problems by using logical reasoning

NEW JERSEY STUDENT LEARNING STANDARDS

TECHNOLOGY
Standard 8.1: Educational Technology: All students will use digital tools to access, manage, evaluate, and
synthesize information in order to solve problems individually and collaboratively and to create and
communicate knowledge.

Standard 8.2: Technology Education, Engineering, and Design: All students will develop an understanding of
the nature and impact of technology, engineering, technological design, and the designed world, as they relate to
the individual, global society, and the environment.

Strand E. Computational Thinking: Programming: Computational thinking builds and enhances problem
solving, allowing students to move beyond using knowledge to creating knowledge.

21ST CENTURY LIFE AND CAREERS

Standard 9.2: Career Awareness, Exploration, and Preparation
Standard 9.3 – Career & Technical Education (CTE)
 Pathway: Programming & Software Development (IT-PRG)

Computer Programming 1 Page 3

III. Proficiency Levels

This course is open to grades 9 -12.

IV. Methods of Assessment

Student Assessment

The teacher will provide a variety of assessments during the course of the year. Among these are: homework,
laboratory exercises, weekly projects, teacher-made tests and quizzes, and long-term projects.

Curriculum/Teacher Assessment

The teacher will provide the subject area supervisor with suggestions for changes on an ongoing basis.

V. Grouping

There is no prerequisite for Computer Programming 1. Students completing this course will have sufficient
knowledge and experience with data types and structures to be successful in advanced programming and
design courses such as C++, Java, etc.

VI. Articulation/Scope & Sequence/Time Frame

Course length is one semester and is offered to students in grades 9-12.

VII. Resources

CodeHS: Introduction to Computer Science in Python https://codehs.com/info/curriculum/intropython

How to Think Like a Computer Scientist: Interactive Edition
http://interactivepython.org/runestone/static/thinkcspy/index.html

Automate the Boring Stuff with Python https://automatetheboringstuff.com/

https://codeacademy.com - an online interactive platform that offers free coding classes

VIII. Methodologies

The course utilizes a blended classroom approach offered through CodeHS. The content is fully web-based,
with students writing and running code in the browser. Teachers utilize tools and resources provided by
CodeHS to leverage time in the classroom and give focused 1-on-1 attention to students. Each unit of the course
is broken down into lessons. Lessons consist of video tutorials, short quizzes, example programs to explore, and
written programming exercises, adding up to over 100 hours of hands-on programming practice in total. Each
unit ends with a comprehensive unit test that assesses student’s mastery of the material from that unit. Much of
the class time is spent in lab work with required hands-on exercises to be completed.

Computer Programming 1 Page 4

IX. Suggested Activities

● Laboratory programming problems
● Game simulated programs
● Cooperative programming projects

X. Interdisciplinary Connections

Connections are made to mathematics by using a variety of arithmetic formulas, as well as higher mathematical
concepts. Connections are also made to the disciplines of business, art and English, by means of incorporation
of theses ideas into programming projects.

XI. Differentiating Instruction for Students with Special Needs: Students with
Disabilities, English Language Learners, and Gifted & Talented Students

Differentiating instruction is a flexible process that includes the planning and design of instruction, how that
instruction is delivered, and how student progress is measured. Teachers recognize that students can learn in
multiple ways as they celebrate students’ prior knowledge. By providing appropriately challenging learning,
teachers can maximize success for all students.

Examples of Strategies and Practices that Support:

Students with Disabilities

• Use of visual and multi-sensory formats
• Use of assisted technology
• Use of prompts
• Modification of content and student products
• Testing accommodations
• Authentic assessments

Gifted & Talented Students
• Adjusting the pace of lessons
• Curriculum compacting
• Inquiry-based instruction
• Independent study
• Higher-order thinking skills
• Interest-based content
• Student-driven
• Real-world problems and scenarios

English Language Learners
• Pre-teaching of vocabulary and concepts
• Visual learning, including graphic organizers
• Use of cognates to increase comprehension
• Teacher modeling

Computer Programming 1 Page 5

• Pairing students with beginning English language skills with students who have more advanced English
language skills

• Scaffolding
•word walls
•sentence frames
•think-pair-share
•cooperative learning groups

XII. Professional Development

The teacher will continue to improve expertise through participation in a variety of professional development
opportunities.

XIII. Curriculum Map

Month Topics

September/February Introduction to Python / Computer Science
Introduction to OOP with graphics
Introduction to use of basic commands
Printing to the console
Learn debugging techniques
Declaration, initialization, and assignment of variables

October/March Data types (int, double, string, boolean)
Translation of arithmetic expressions
Using and converting keyboard input
Use of comments for program understanding
BENCHMARK PROJECT

November/April Use of Decision Statements
Applications of Loops (While, For, Nested)

December/May Introduction to Functions (Built-in vs. User Defined)
Exception handling and identification

January/June Manipulation of strings
Math operators on strings
Transverse through a string
BENCHMARK PROJECT

Other Topics (That May Be
Covered)

Data Structures:
● Tuples
● Lists
● Dictionaries
● 2D lists
● List comprehensions
● Packing and unpacking

Computer Programming 1 Page 6

● Mutable vs. immutable
● Equivalence vs. identity

Project:
●Allow students to combine a variety of topics (strings, loops,

booleans, user input, etc.) in a single program
● Introduce students to incremental development
● Strengthen debugging skills by having students develop a larger

project
Classes and Objects:
● Classes
● Attributes
● Class variables vs. instance variables
● Methods
● Built-in methods
● Composition, inheritance, and polymorphism
● Private attributes

